Hypercyclic operators and rotated orbits with polynomial phases

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypercyclic operators and rotated orbits with polynomial phases

An important result of León-Saavedra and Müller says that the rotations of hypercyclic operators remain hypercyclic. We provide extensions of this result for orbits of operators which are rotated by unimodular complex numbers with polynomial phases. On the other hand, we show that this fails for unimodular complex numbers whose phases grow to infinity too quickly, say at a geometric rate. A fur...

متن کامل

Operators with Common Hypercyclic Subspaces

We provide a reasonable sufficient condition for a family of operators to have a common hypercyclic subspace. We also extend a result of the third author and A. Montes [22], thereby obtaining a common hypercyclic subspace for certain countable families of compact perturbations of operators of norm no larger than one.

متن کامل

Hypercyclic Behaviour of Operators in a Hypercyclic C0-Semigroup

Let {Tt}t≥0 be a hypercyclic strongly continuous semigroup of operators. Then each Tt (t > 0) is hypercyclic as a single operator, and it shares the set of hypercyclic vectors with the semigroup. This answers in the affirmative a natural question concerning hypercyclic C0-semigroups. The analogous result for frequent hypercyclicity is also obtained.

متن کامل

About Subspace-Frequently Hypercyclic Operators

In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic  operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...

متن کامل

Oscillatory Integral Operators with Homogeneous Polynomial Phases in Several Variables

We obtain L decay estimates in λ for oscillatory integral operators Tλ whose phase functions are homogeneous polynomials of degree m and satisfy various genericity assumptions. The decay rates obtained are optimal in the case of (2+2)–dimensions for any m, while in higher dimensions the result is sharp for m sufficiently large. The proof for large m follows from essentially algebraic considerat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2014

ISSN: 0024-6107

DOI: 10.1112/jlms/jdu005